سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

بهبود دقت پیش بینی خطر بیماری پرفشارخون بر مبنای تغییرات ژنتیکی با استفاده از روش های یادگیری ماشین

Publish Year: 1399
Type: Conference paper
Language: Persian
View: 623

This Paper With 11 Page And PDF and WORD Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

IIEC17_153

Index date: 2 March 2021

بهبود دقت پیش بینی خطر بیماری پرفشارخون بر مبنای تغییرات ژنتیکی با استفاده از روش های یادگیری ماشین abstract

از مهم ترین اهداف پزشکی شخصی، تسریع و افزایش دقت پیش بینی رخداد بیماری با استفاده از برر سی تغییرات ژنتیکی است. ژنوم انسان مجموعه ای از بیش از 3 میلیارد جفت باز آدنین، تیمین، گوانین و سیتوزین می باشد که تفاوت این توالی ها در افراد مختلف به عنوان مارکر ژنتیکی جهت تمایز ژنتیکی افراد تلقی می شود. یکی از روش های به دست آوردن ارتباط این تغییرات با بروز بیماری ها انجام مطالعات گسترده ژنومی می باشد. بیماری فشار خون یکی از مهم ترین بیماری های زمینه ساز بیماری های قلنی و عروقی است لذا روش هایی که بتواند در سنین ابتدایی عمر با دقت بالا خطر بیماری فشار خون را نشان دهد، پر اهمیت است. تاکنون برای پیش بینی این بیماری از روش های مختلب بالینی و منتنی بر ژنتیک استفاده شده است اما مشکل مهم این روش ها تعداد بالای متغیرهای ورودی به عنوان مارکر ژنتیکی و تعداد کم نمونه ها نسنت به آن می باشد. از روا هایی که می تواند بر این مشکلات غلنه کند روش های یادگیری ماشین اسات که با گنجاندن متغیرهای متعدد در مدل، دقت را نیز افزایش دهد. در مطالعه حاضر که بر روی مارکرهای ژنتیکی شرکت کنندگان در مطالعه 20 ساله ژنتیک کاردیومتابولیک تهران انجام شده است مدلی با دقت AUC 82 درصد ارائه شده است که در مقایسه با مدل های بالینی و ژنتیکی منتنی بر امتیاز خطر چندژنی دارای دقت بالاتریست. نتایج این مطالعه می تواند به بهینه سازی مطالعات مبتنی بر ماشین در حوزه سلامت کمک شایانی نماید

بهبود دقت پیش بینی خطر بیماری پرفشارخون بر مبنای تغییرات ژنتیکی با استفاده از روش های یادگیری ماشین Keywords:

بهبود دقت پیش بینی خطر بیماری پرفشارخون بر مبنای تغییرات ژنتیکی با استفاده از روش های یادگیری ماشین authors

سیدعلی لاجوردی

دانشگاه تربیت مدرس - دانشکده صنایع و سیستم ها

مهرداد کارگری

دانشگاه تربیت مدرس - دانشکده صنایع و سیستم ها

مریم السادات دانشپور

دانشگاه علوم پزشکی شهید بهشتی - پژوهشکده علوم غدد درون ریز و متابولیسم

مهدی اکبرزاده

دانشگاه علوم پزشکی شهید بهشتی - پژوهشکده علوم غدد درون ریز و متابولیسم

مقاله فارسی "بهبود دقت پیش بینی خطر بیماری پرفشارخون بر مبنای تغییرات ژنتیکی با استفاده از روش های یادگیری ماشین" توسط سیدعلی لاجوردی، دانشگاه تربیت مدرس - دانشکده صنایع و سیستم ها؛ مهرداد کارگری، دانشگاه تربیت مدرس - دانشکده صنایع و سیستم ها؛ مریم السادات دانشپور، دانشگاه علوم پزشکی شهید بهشتی - پژوهشکده علوم غدد درون ریز و متابولیسم؛ مهدی اکبرزاده، دانشگاه علوم پزشکی شهید بهشتی - پژوهشکده علوم غدد درون ریز و متابولیسم نوشته شده و در سال 1399 پس از تایید کمیته علمی هفدهمین کنفرانس بین المللی مهندسی صنایع پذیرفته شده است. کلمات کلیدی استفاده شده در این مقاله نمره خطر پلی ژنتیک، یادگیری ماشین، بیماری فشار خون، مارکر ژنتیکی هستند. این مقاله در تاریخ 12 اسفند 1399 توسط سیویلیکا نمایه سازی و منتشر شده است و تاکنون 623 بار صفحه این مقاله مشاهده شده است. در چکیده این مقاله اشاره شده است که از مهم ترین اهداف پزشکی شخصی، تسریع و افزایش دقت پیش بینی رخداد بیماری با استفاده از برر سی تغییرات ژنتیکی است. ژنوم انسان مجموعه ای از بیش از 3 میلیارد جفت باز آدنین، تیمین، گوانین و سیتوزین می باشد که تفاوت این توالی ها در افراد مختلف به عنوان مارکر ژنتیکی جهت تمایز ژنتیکی افراد تلقی می شود. یکی ... . این مقاله در دسته بندی موضوعی فشار خون و یادگیری ماشین طبقه بندی شده است. برای دانلود فایل کامل مقاله بهبود دقت پیش بینی خطر بیماری پرفشارخون بر مبنای تغییرات ژنتیکی با استفاده از روش های یادگیری ماشین با 11 صفحه به فرمت PDF، میتوانید از طریق بخش "دانلود فایل کامل" اقدام نمایید.