Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها
Paper
Title

Rice Classification with Fractal-based Features based on Sparse Structured Principal Component Analysis and Gaussian Mixture Model

مجله هوش مصنوعی و داده کاوی، دوره: 9، شماره: 2
Year: 1400
COI: JR_JADM-9-2_010
Language: EnglishView: 71
This Paper With 11 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 11 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

S. Mavaddati - Department of Engineering and Technology, University of Mazandaran, Babolsar, Iran.
S. Mavaddati - Sari Agricultural Sciences and Natural Resources University, Iran.

Abstract:

Development of an automatic system to classify the type of rice grains is an interesting research area in the scientific fields associated with modern agriculture. In recent years, different techniques are employed to identify the types of various agricultural products. Also, different color-based and texture-based features are used to yield the desired results in the classification procedure. This paper proposes a classification algorithm to detect different rice types by extracting features from the bulk samples. The feature space in this algorithm includes the fractal-based features of the extracted coefficients from the wavelet packet transform analysis. This feature vector is combined with other texture-based features and used to learn a model related to each rice type using the Gaussian mixture model classifier. Also, a sparse structured principal component analysis algorithm is applied to reduce the dimension of the feature vector and lead to the precise classification rate with less computational time. The results of the proposed classifier are compared with the results obtained from the other presented classification procedures in this context. The simulation results, along with a meaningful statistical test, show that the proposed algorithm based on the combinational features is able to detect precisely the type of rice grains with more than ۹۹% accuracy. Also, the proposed algorithm can detect the rice quality for different percentages of combination with other rice grains with ۹۹.۷۵% average accuracy.

Keywords:

Paper COI Code

This Paper COI Code is JR_JADM-9-2_010. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

https://civilica.com/doc/1253740/

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
Mavaddati, S. and Mavaddati, S.,1400,Rice Classification with Fractal-based Features based on Sparse Structured Principal Component Analysis and Gaussian Mixture Model,https://civilica.com/doc/1253740

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :

  • Food and agriculture organization of the United nations (FAO), “Rice ...
  • K. P. Neelamma, S. M. Virendra, and M. Y. Ravi, ...
  • S. Majumdar, and D. S. Jayas, "Classification of cereal grains ...
  • N. S. Visen, D. S. Jayas, J. Paliwal, and N. ...
  • J. Paliwal, M. S. Borhan, and D. S. Jayas, "Classification ...
  • Z. Y. Liu, F. Cheng, Y. B. Ying, and X. ...
  • B. Verma, "Image processing techniques for grading & classification of ...
  • M. Jinorose, S. Prachayawarakorn, and S. Soponronnarit, "Development of a ...
  • G. V. Dalen, "Determination of the size distribution and percentage ...
  • L. Pabamalie, and H. Premaratne, "An intelligent rice quality classifier," ...
  • M. Hatami, A. Rahmanididar, J. Khazaee, "Identification of common Iranian ...
  • S. Faiazi, M. H. Abaspourfard, S. A. Monajemi, H. Sadrnia, ...
  • F. A. Mousavirad, and K. Mollazade, "Real time identification of ...
  • F. A. Mousavirad, and K. Mollazade, "Identification of Rice Variaties ...
  • I. Golpour, J. Amiripanah, R. Amirichaichan, and J. Khazaee, "Detection ...
  • S. Mavaddati, "Rice classification and quality detection based on sparse ...
  • S. J. Mousavirad, and F. Akhlaghiantab, "Design of an expert ...
  • S. Mavaddati, "Sparse structured principal component analysis and model learning ...
  • A. F. Costa, G. E. Humpire-Mamani, and A. J. M. ...
  • T. Ojala, and M. Pietikäinen, "Unsupervised texture segmentation using feature ...
  • S. Majumdar, D. S. Jayas, "Classification of cereal grains using ...
  • M. Nixon, A. Aguado, Feature extraction & image processing, ۲nd ...
  • J. Flusser, T. Suk, and B. Zitová, Moments and moment ...
  • I.T. Jolliffe, Principal Component Analysis, Springer, ۲nd edition, ۲۰۰۲ ...
  • H. Zou, T. Hastie, R. Tibshirani, "Sparse principal component analysis," ...
  • R. Jenatton, G. Obozinski, and F. Bach, "Structured Sparse Principal ...
  • R. Jenatton, J.Y. Audibert, and F. Bach, "Structured variable selection ...
  • D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures, ...
  • https://www.danielsoper.com/statcalc/calculator.aspx?id=۴ ...
  • [۳۰]http://onlinestatbook.com/۲/calculators/normal_dist.html ...

Research Info Management

Certificate | Report | من نویسنده این مقاله هستم

اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

Scientometrics

The specifications of the publisher center of this Paper are as follows:
Type of center: دانشگاه دولتی
Paper count: 10,793
In the scientometrics section of CIVILICA, you can see the scientific ranking of the Iranian academic and research centers based on the statistics of indexed articles.

Share this page

More information about COI

COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.

Support