مدل خوشه بندی و پیش بینی ارزش طول عمر مشتری (مورد مطالعه: مشتریان مرکز شماره گذاری کالا و خدمات ایران)
Publish place: Industrial Management Perspective، Vol: 10، Issue: 4
Publish Year: 1399
Type: Journal paper
Language: Persian
View: 479
This Paper With 24 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
JR_INDU-10-4_002
Index date: 19 September 2021
مدل خوشه بندی و پیش بینی ارزش طول عمر مشتری (مورد مطالعه: مشتریان مرکز شماره گذاری کالا و خدمات ایران) abstract
یکی از مباحث مهم در زمینه حفظ مشتریان و چگونگی رفتار با آنها، ارزش طول عمر مشتری (CLV) است . هدف از این پژوهش، طراحی مدلی برای خوشه بندی و پیش بینی طول عمر مشتریان و همچنین ارزیابی مشتریان در مرکز شماره گذاری کالا و خدمات ایران است. در این پژوهش اطلاعات ۷۴۳۸۵ عضو این سازمان در بازه زمانی ۱۳۹۰ - ۱۳۹۶ دریافت شد. مشتریان توسط تکنیک داده کاوی CRISP طبقه بندی شده و درنهایت مدلی برای پیش بینی آن ها طراحی شد. ابتدا اعضا توسط مدل RFM و الگوریتم K-Means به ۷ طبقه دسته بندی شده و سپس هر طبقه توسط روش محاسبه ارزش طول عمر مشتریان رتبه بندی شد. در ادامه توسط الگوریتم های رگرسیون لجستیک، درخت تصمیم و شبکه های عصبی، الگوهای پنهان بین داده ها و بخش های مختلف مشتریان کشف شدند. نتایج این پژوهش، رفتار مشتریان هر یک از خوشه ها را در خدمات مرکز و همچنین مدل رفتار مشتریان آتی را نشان داده است. این پژوهش با تحلیل خوشه ها به مدیران در ارائه راهبردهای بازاریابی، حفظ اعضای وفادار و جذب یا حذف اعضای غیرفعال، یاری می رساند. در پژوهش حاضر تعداد خوشه مناسب برای مشتریان ۷ عدد است؛ همچنین در پیش بینی کلاس مشتریان عملکرد شبکه های عصبی با دقت ۵۶ / ۹۹ درصد نسبت دیگر الگوریتم ها بهتر بوده است.
مدل خوشه بندی و پیش بینی ارزش طول عمر مشتری (مورد مطالعه: مشتریان مرکز شماره گذاری کالا و خدمات ایران) Keywords:
مدل خوشه بندی و پیش بینی ارزش طول عمر مشتری (مورد مطالعه: مشتریان مرکز شماره گذاری کالا و خدمات ایران) authors
فاطمه نبی زاده
کارشناسی ارشد، دانشگاه مهرالبرز.
سعید روحانی
دانشیار، دانشگاه تهران.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :