سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

LSTM Modeling and Optimization of Rice (Oryza sativa L.) Seedling Growth using Intelligent Chamber

Publish Year: 1402
Type: Journal paper
Language: English
View: 129

This Paper With 12 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_JADM-11-4_006

Index date: 10 January 2024

LSTM Modeling and Optimization of Rice (Oryza sativa L.) Seedling Growth using Intelligent Chamber abstract

An intelligent growth chamber was designed in 2021 to model and optimize rice seedlings' growth. According to this, an experiment was implemented at Sari University of Agricultural Sciences and Natural Resources, Iran, in March, April, and May 2021. The model inputs included radiation, temperature, carbon dioxide, and soil acidity. These growth factors were studied at ambient and incremental levels. The model outputs were seedlings' height, root length, chlorophyll content, CGR, RGR, the leaves number, and the shoot's dry weight. Rice seedlings' growth was modeled using LSTM neural networks and optimized by the Bayesian method. It concluded that the best parameter setting was at epoch=100, learning rate=0.001, and iteration number=500. The best performance during training was obtained when the validation RMSE=0.2884.

LSTM Modeling and Optimization of Rice (Oryza sativa L.) Seedling Growth using Intelligent Chamber Keywords:

LSTM Modeling and Optimization of Rice (Oryza sativa L.) Seedling Growth using Intelligent Chamber authors

Hamid Ghaffari

Sari Agricultural Sciences and Natural Resources University, Iran.

Hemmatollah Pirdashti

Sari Agricultural Sciences and Natural Resources University, Iran.

Mohammad Reza Kangavari

Iran University of Science and Technology, Tehran, Iran.

Sjoerd Boersma

Department of Farm Technology, Wageningen University & Research, Wageningen, the Netherlands.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
B. Alhnaity, S. Pearson, G. Leontidis, and S. Kollias, “Using ...
K. Alibabaei, P. D. Gaspar, and T. M. Lima, “Crop ...
K. Anguraj, B. Thiyaneswaran, G. Megashree, J. P. Shri, S. ...
H. C. D. Castro Filho, O. A. D. Carvalho Júnior, ...
S. Chaithanya, A. Punith Raj, N. Rajeshrahul, H. Sujatha, and ...
A. Chandgude, N. Harpale, D. Jadhav, P. Pawar, and S. ...
Y. Deng, C. Cao, and S. Chen, “Research on correlation ...
M. K. Dharani, R. Thamilselvan, P. Natesan, P. C. D. ...
X. Feng, P. He, H. Zhang, W. Yin, Y. Qian, ...
S. A. Haider, S. R. Naqvi, T. Akram, G. A. ...
F. Jiao, Y. Chen, X. Zhang, Y. Zhou, L. Wang, ...
S. Jeong, J. Ko, T. Shin, and J. M. Yeom, ...
S. Kujawa and G. Niedbała, “Artificial neural networks in agriculture,” ...
S. Li, D. Fleisher, D. Timlin, V. R. Reddy, Z. ...
L. W. Liu, C. T. Lu, Y. M. Wang, K. ...
V. Meshram, K. Patil, V. Meshram, D. Hanchate, and S. ...
T. Moon, H. Y. Choi, D. H. Jung, S. H. ...
E. Ndikumana, D. Ho Tong Minh, N. Baghdadi, D. Courault, ...
K. Pravallika, G. Karuna, K. Anuradha, and V. Srilakshmi, “Deep ...
A. Rizkiana, A. P. Nugroho, N. M. Salma, S. Afif, ...
S. Sakurai, H. Uchiyama, A. Shimada, and R. I. Taniguchi, ...
S. Samiei, P. Rasti, J. Ly Vu, J. Buitink, and ...
S. Tan, J. Liu, H. Lu, M. Lan, J. Yu, ...
A. Torkaman, K. Badie, A. Salajegheh, M. H. Bokaei, and ...
J. Wu, X. Y. Chen, H. Zhang, L. D. Xiong, ...
C. Zhang and Z. Liu, “Application of big data technology ...
H. Zhu, C. Liu, and H. Wu, “A prediction method ...
نمایش کامل مراجع