Impact of Various Priority Scenarios on a Fuzzy-Simulated Flowshop Scheduling Model
Publish place: 9th International Industrial Engineering Conference
Publish Year: 1391
نوع سند: مقاله کنفرانسی
زبان: English
View: 1,401
This Paper With 7 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IIEC09_147
تاریخ نمایه سازی: 26 اسفند 1391
Abstract:
One of the main factors effective on Manufacturing Lead Time (MLT) of a flow shop system is the resources’ queue priority rules which has not been discussed well in literaturespecially in the case of multiple queue systems. In this paper a real-world application of flow shop system has been simulatedand analyzed in crisp and fuzzy states. α-cuts method and fuzzy probabilistic functions are used to perform the fuzzy simulation,taking into account the impreciseness of mostly process times. Amathematical and graphical statistics analysis is performed on data acquired from variety of priority scenarios applied in the simulated models. It is then observed and conjectured that the resources with the biggest queue length, average waiting time and resource utility percentage, have attracted influence from priority scenarios in altering the MLT, more than any otherresources. Eventually an Artificial Neural Networks (ANN) optimization algorithm is applied for training the simulated flow shop system in order to figure out any variations of MLT due to priority scenario changes, in future analyses. The outputs imply that the priority rules; Last in First out (LIFO) and First in First out (FIFO) are more likely to cause variations in MLT than the other ones.
Keywords:
Authors
Ali Azadeh
College of Engineering, University of Tehran,
Sina Keyhanian
۱School of Industrial Engineering and Center of Excellence
Mohsen Moghaddam
Purdue University, Indiana, USA
Ali Karimi Nouri
University of New York at Buffalo, New York, USA
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :