A Hybrid Machine Learning Approach and Genetic Algorithm for Malware Detection
Publish Year: 1403
Type: Journal paper
Language: English
View: 173
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
JR_JADM-12-1_008
Index date: 29 May 2024
A Hybrid Machine Learning Approach and Genetic Algorithm for Malware Detection abstract
Detecting and preventing malware infections in systems is become a critical necessity. This paper presents a hybrid method for malware detection, utilizing data mining algorithms such as simulated annealing (SA), support vector machine (SVM), genetic algorithm (GA), and K-means. The proposed method combines these algorithms to achieve effective malware detection. Initially, the SA-SVM method is employed for feature selection, where the SVM algorithm identifies the best features, and the SA algorithm calculates the SVM parameters. Subsequently, the GA-K-means method is utilized to identify attacks. The GA algorithm selects the best chromosome for cluster centers, and the K-means algorithm has applied to identify malware. To evaluate the performance of the proposed method, two datasets, Andro-Autopsy and CICMalDroid 2020, have been utilized. The evaluation results demonstrate that the proposed method achieves high true positive rates (0.964, 0.985), true negative rates (0.985, 0.989), low false negative rates (0.036, 0.015), and false positive rates (0.022, 0.043). This indicates that the method effectively detects malware while reasonably minimizing false identifications.
A Hybrid Machine Learning Approach and Genetic Algorithm for Malware Detection Keywords:
A Hybrid Machine Learning Approach and Genetic Algorithm for Malware Detection authors
Mahdieh Maazalahi
Department of Computer Science, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran.
Soodeh Hosseini
Department of Computer Science, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :