Peak Hour Traffic Volume Prediction using a Hybrid Genetic Neural Method
Publish Year: 1394
نوع سند: مقاله کنفرانسی
زبان: English
View: 696
This Paper With 16 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
TTC14_254
تاریخ نمایه سازی: 30 دی 1394
Abstract:
Accurate prediction of short-term traffic flow plays a fundamental role in theIntelligent Transportation Systems (ITS) and Advanced Traffic ManagementSystems (ATMS). In this paper, a combination of multi-layer Back-PropagationNeural Networks (BPNN) and Genetic Algorithm (GA) is used to forecast thevolume of the traffic during peak hours. The real data used for modeling isobtained from Karaj-Qazvin freeway in the spring of 2013. Given the proposedmethod (BPNN-GA), Neural Network designed and be taught using trainingdata. In part train of neural network, which is typically are used internal functionsof the Neural Network's toolbox, Genetic Algorithms have been used in thisresearch. The purpose of train the network is determine the weight of its internalstructure. The Genetic Algorithm optimize network weights and improve thenetwork in learning the patterns which exist in traffic data. Thus the NeuralNetwork get the better answers in forecasting. Then the trained network isvalidated and is used to forecast the volume of traffic during peak hours in thefollowing week. To assess these forecasts, the conventional Back-PropagationNeural Network (BPNN) has also been developed and its results are comparedwith the proposed method. The results show that the proposed method (BPNNGA)forecasts the volume of peak hour traffic with greater stability and moreaccurately than conventional Neural Networks.
Keywords:
Authors
Shahin Shahani
Assistant Professor, Department of Civil Engineering, Payam Noor University, Tehran Shomal Center, Tehran, Iran
Mahdi Motamedi sedeh
Master Student, Department of Civil Engineering, Payam Noor University, Tehran Shomal Center, Tehran, Iran
Alireza Daneshmandi
Master of Science, Department of Civil Engineering, Payam Noor University, Tehran Shomal Center, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :