TOWARD A PREDICTIVE MODEL FOR ESTIMATING CRITICAL PROPERTIES OF PURE COMPONENTS
Publish Year: 1394
Type: Conference paper
Language: English
View: 882
This Paper With 8 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
ICOGPP03_186
Index date: 14 February 2016
TOWARD A PREDICTIVE MODEL FOR ESTIMATING CRITICAL PROPERTIES OF PURE COMPONENTS abstract
In this study, least square support vector machine (LSSVM) is utilized to predict and calculate critical properties including the critical pressure, temperature and volume of pure compounds. The datasets of 563 compounds from various chemical groups containing: paraffins; cycloparaffins; monooleffins and dioleffins; cyclooleffins and actylens; benzene derivatives; condensed ring aromatics and derivatives; acids, alcohols, and phenols and aldehydes; amines and nitrogen containing components; esters; ethers, ketones; halogenated hydrocarbons; sulfur containing hydrocarbons have been used to propose a comprehensive non-group contribution predictive model. The parameters of the model are optimized through a robust optimization tool named coupled simulated annealing (CSA). The developed model gives more accurate predictions compared to previously proposed methods. Using this robust method, average absolute percent relative error obtained 5.92% for critical pressure, 1.37% for critical temperature and 2.98% for critical volume.
TOWARD A PREDICTIVE MODEL FOR ESTIMATING CRITICAL PROPERTIES OF PURE COMPONENTS Keywords:
TOWARD A PREDICTIVE MODEL FOR ESTIMATING CRITICAL PROPERTIES OF PURE COMPONENTS authors
Amir Varamesh
Department of Petroleum Engineering, Amirkabir University of Technology, Tehran, Iran
Abdolhossein Hemmati-Sarapardeh
Department of Petroleum Engineering, Amirkabir University of Technology, Tehran, Iran
Mostafa Keshavarz Moraveji
Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :