Open Channel Junction Velocity Prediction by Gene Expression Programming and Regression Methods
Publish place: International Conference on Civil Engineering , Architecture and urban infrastructure
Publish Year: 1394
Type: Conference paper
Language: English
View: 951
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
ICICA01_1000
Index date: 17 March 2016
Open Channel Junction Velocity Prediction by Gene Expression Programming and Regression Methods abstract
Open channel junctions are one of the most significant and practical structures in hydraulic engineering. Due to erosion in the contraction zone and sediment deposition in the separation zone, the flow velocity in the junctions is a vital topic in the designing of open channel junctions. This study aims at an accurate prediction of the flow velocity in open channel junctions through Gene Expression Programming (GEP) and regression models, by use of different points of the flow (x*, y*, and z*) and the ratio of the upstream to downstream discharge in the main channel (q*) as input parameters. The numerical models are compared according to their different statistical errors. It is concluded that the GEP model with Mean Square Error (MSE) value of (0.055) is more accurate in predicting longitudinal velocity in open channel junctions than the regression models with MSE values of 0.103.
Open Channel Junction Velocity Prediction by Gene Expression Programming and Regression Methods Keywords:
Open Channel Junction Velocity Prediction by Gene Expression Programming and Regression Methods authors
Minoo Sharifipour
M.Sc. Student, Department of Civil Engineering, Razi University, Kermanshah, Iran
Hossein Bonakdari
Associate Professor, Department of Civil Engineering, Razi University, Kermanshah, Iran
Amir Hossein Zaji
Ph.D. Student, Department of Civil Engineering, Razi University, Kermanshah, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :