A new correlation and intelligent modeling of asphaltene precipitation in live and tank crude oil systems
Publish place: 5th International Congress on Chemical Engineering
Publish Year: 1386
نوع سند: مقاله کنفرانسی
زبان: English
View: 2,602
This Paper With 13 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICHEC05_343
تاریخ نمایه سازی: 7 بهمن 1386
Abstract:
The most important parameters in asphaltene precipitation modeling and prediction are the asphaltene and oil solvent solubility parameters which are very sensitive to reservoir and operational conditions. The driving force of asphaltene flocculation is the difference between asphaltene and oil solvent solubility parameter. Since the nature of asphaltene solubility is yet unknown, the existing prediction models may fail in prediction the asphaltene precipitation in crude oil systems and it is the case that we have the opportunity to use artificial intelligence techniques. This paper introduces a new implementation of the artificial intelligent computing technology in petroleum engineering. We have proposed a new approach to prediction of the asphaltene precipitation in crude oil systems using fuzzy logic, neural networks and genetic algorithms. Results of this research indicate that the proposed correlation model with recognizing the possible patterns between input and output variables can successfully predict and model asphaltene precipitation in tank and live crude oils with a good accuracy.
Keywords:
Authors
Abbas Khaksar Manshad
Department of Chemical Engineering, University of Tehran, Tehran, Iran
Siavash Ashoori
Department of Petroleum Engineering, Petroleum University of Technology, Ahwaz, Iran
Yasin Hajizadeh
Omidieh Azad University, Ahwaz, Iran
Mohsen Edalat
Department of Chemical Engineering, University of Tehran, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :