A Wavelet-Based Neuro-Fuzzy System for DGPS Corrections Approximation
Publish place: 1st Joint Congress on Fuzzy and Intelligent Systems
Publish Year: 1386
Type: Conference paper
Language: English
View: 1,885
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
FJCFIS01_158
Index date: 3 June 2008
A Wavelet-Based Neuro-Fuzzy System for DGPS Corrections Approximation abstract
When Global Positioning System (GPS) measurements are made by two users within the same GPS satellite transmission sight, the associated errors are mainly similar. Consequently, knowing the exact location of the receiver with respect to GPS satellites within view allows the measurements errors to be estimated. Thus, these error estimates may be extracted by other nearby GPS users if relayed properly. This correction scheme is the idea behind Differential GPS (DGPS). Inspired by the theory of Multiresolution Analysis (MRA) of wavelet transforms and fuzzy concepts, a Fuzzy Wavelet Network (FWN) is proposed for approximating DGPS corrections. The FWN combines the traditional Takagi-Sugeno-Kang (TSK) fuzzy model and the Wavelet Neural Network (WNN). Each
fuzzy rule corresponding to a WNN consists of single-scaling wavelets. The non-orthogonal and compactly supported functions as WNN bases are adopted. The online structure/parameter learning algorithm is performed concurrently in the FWN. The tests results on the collected real data are given to illustrate the performance and effectiveness of the proposed model. The results emphasize that RMS error reduces to less than 0.7m. Also, it is shown that performance FWN is better than single WNN.
A Wavelet-Based Neuro-Fuzzy System for DGPS Corrections Approximation Keywords:
A Wavelet-Based Neuro-Fuzzy System for DGPS Corrections Approximation authors
M. R. Mosavi
Department of Electrical and Computer Engineering, Behshahr University of Science and Technology
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :