سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Informative miRNAs Selection in Cancer Detection Using Adopted QGA

Publish Year: 1395
Type: Conference paper
Language: English
View: 626

This Paper With 7 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

ICTCK03_075

Index date: 1 July 2017

Informative miRNAs Selection in Cancer Detection Using Adopted QGA abstract

Cancer is the most popular reason of death worldwide that many people struggle with it. Although the cancer is dangerous, but if it detect in early stages increases the chance of patient survival. The miRNAs are one of the important ways for early cancer detection that it caused to return an interesting field for researches. All the miRNAs haven’t any role in cancer detection. The Quantum Genetic Algorithm (QGA) is a developed Genetic Algorithm (GA) that by using of quantum computing on top of the genetic algorithm to alleviate the pre convergence problem. The interest of this paper is to adopt the QGA for solving of informative miRNAs selection and irrelevant miRNAs removing problem. However, in the suggested algorithm, SVM classifier performance and the dimension of the selected feature vector are dependent on heuristic information for QGA. As a result, the proposed approach selects the adaptive feature subset with respect to the shortest feature dimension and the improved performance of the classifier. The performances of this method are evaluated on the popular data set which the experimental results show that since QGA-SVM is used as one of wrapper methods, as a result, its overall performance is better separation between normal and cancer expression for all types of cancer and better classification rate.

Informative miRNAs Selection in Cancer Detection Using Adopted QGA Keywords:

Informative miRNAs Selection in Cancer Detection Using Adopted QGA authors

Fahimeh Nezhadali Naei

Department of Computer Engineering, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran

Reza Ghaemi

Department of Computer Engineering, Quchan Branch,Islamic Azad University, Quchan, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Sai, M, and Singh, S.: , Jdentification of Causal Relationships ...
Amin, K.M., Shahin, A., and Guo, Y.: , A novel ...
To further evaluation of proposed QGA-SVM, we apply it on ...
classification of breast cancers, Diagnostic and interventional imaging, 2014, 95, ...
Pal, J.K., Ray, S.S., and Pal, S.K.: , Jdentifying relevant ...
Yang, Z., Zhuan, B., Yan, Y., Jiang, S., and Wang, ...
Keshani, M., Azimifar, Z., Tajeripour, F., and Boostani, R.: , ...
Mukhopadhyay, A., and Maulik, J.: , An SVM-wrapped multiobjective evolutionary ...
in term of accuracy. Table V shows the accuracy [4] ...
Song, Q., Ni, J., and Wang, G.: _ fast clustering-based ...
Y.: , Computational prediction of candidate miRNAs and their potential ...
Korfiati, A., Theofilatos, K., Kleftogiannis, D., Alexakos, C., algorithm", Computational ...
Artificial Intelligence, 2014, 31, pp. 35-43 ...
Navon, R., Wang, H., Steinfeld, I., Tsalenko, A., Ben-Dor, A., ...
differential expression in multiple cancer types, PloS ome, 2009, 4, ...
Leidinger, P., Keller, A., Borries, A., Reichrath, J., Rass, K., ...
Foithong, S., Pinngern, O., and Attchoo, B.: , Feature subset ...
knowledge and data engineering, 2013, 25, (1), pp. 1-14 ...
Zheng, Z., Jiao, Y., Du, X., Tian, Q., Wang, Q., ...
joural of biological sciences, 2016, 23, (3), pp. 372-378 ...
Nigam, D., Kadimi, P.K., Kumar, S., Mishra, D.C, and Rai, ...
talk among different metabolisms, Genomics data, 2015, 5, pp. 292-296 ...
Mohammadi, F.G., and Abadeh, M.S.: , Jmage steganalysis using a ...
نمایش کامل مراجع