سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

مقایسه طبقه بندی داده های نامتوازن توسط الگوریتم ماشین بردار پشتیبانی با الگوریتم شبکه عصبی

Publish Year: 1397
Type: Conference paper
Language: Persian
View: 1,052

This Paper With 9 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

ECMM01_082

Index date: 14 December 2018

مقایسه طبقه بندی داده های نامتوازن توسط الگوریتم ماشین بردار پشتیبانی با الگوریتم شبکه عصبی abstract

به طور کلی هدف داده کاوی، یادگیری و آموختن از داده ها است. داده کاوی با بهره گیری از ابزارهای تجزیه و تحلیل داده ها به منظور کشف الگوها و روابط معتبری که تاکنون ناشناخته بوده اند به طبقه بندی داده ها می پردازد. این ابزارها ممکن است مدل های آماری، الگوریتم های ریاضی و روش های یاد گیرنده باشند که این کار خود را به صورت خودکار و بر اساس تجربه ای که از طریق شبکه های عصبی یا ماشین برداری پشتیبان به دست می آورند بهبود می بخشد. با توجه به اینکه داده های کنونی از حالت ساختاریافته و متوازن به سمت غیرساختاری و نامتوازن می روند و حجم این مدل مجموعه داده ها در دنیای واقعی چشمگیرتر شده است. ماشین بردار پشتیبانی تعمیم خوبی برای داده های نامتوازن و همچنین توانایی یادگیری یک رابطه غیر خطی بین داده ها و متغیر هدف است و در مقایسه با روشی مانند شبکه عصبی ساده تر، دقت و سرعت اجرایی بالاتر و خطای پایین تری دارد. در این مقاله به شبیه سازی بر روی مجموعه داده واقعی نامتوازن برگرفته از پایگاه داده UCI می پردازیم و نتایج را در دو روش SVM و شبکه عصبی با توجه به سه معیار ارزیابی صحت، خطا و زمان اجرای الگوریتم مقایسه می کنیم تا ثابت کنیم یکی از پرکابردترین روش های کلاسیک طبقه بندی داده ها در داده کاوی برای داده های واقعی نامتوازن نمی تواند جواب دقیقی بدهد و باید از روش های نوین مانند ماشین بردار پشتیبان برای اینگونه داده ها استفاده کرد.

مقایسه طبقه بندی داده های نامتوازن توسط الگوریتم ماشین بردار پشتیبانی با الگوریتم شبکه عصبی Keywords:

مقایسه طبقه بندی داده های نامتوازن توسط الگوریتم ماشین بردار پشتیبانی با الگوریتم شبکه عصبی authors

مریم عمادالدین

دانشجوی کارشناسی ارشد مهندسی کامپیوتر، موسسه آموزش عالی غیرانتفاعی آبا

نسرین بدیع

استاد دانشگاه آزاد اسلامی واحد تهران جنوب

حمید خفاجه

هیات علمی موسسه آموزش عالی غیر انتغاعی آبا

مقاله فارسی "مقایسه طبقه بندی داده های نامتوازن توسط الگوریتم ماشین بردار پشتیبانی با الگوریتم شبکه عصبی" توسط مریم عمادالدین، دانشجوی کارشناسی ارشد مهندسی کامپیوتر، موسسه آموزش عالی غیرانتفاعی آبا؛ نسرین بدیع، استاد دانشگاه آزاد اسلامی واحد تهران جنوب؛ حمید خفاجه، هیات علمی موسسه آموزش عالی غیر انتغاعی آبا نوشته شده و در سال 1397 پس از تایید کمیته علمی کنفرانس بین المللی تحقیقات بین رشته ای در مهندسی برق، کامپیوتر، مکانیک و مکاترونیک در ایران و جهان اسلام پذیرفته شده است. کلمات کلیدی استفاده شده در این مقاله داده های نامتوازن، ماشین بردار پشتیبان، شبکه عصبی، زمان اجرای الگوریتم هستند. این مقاله در تاریخ 23 آذر 1397 توسط سیویلیکا نمایه سازی و منتشر شده است و تاکنون 1052 بار صفحه این مقاله مشاهده شده است. در چکیده این مقاله اشاره شده است که به طور کلی هدف داده کاوی، یادگیری و آموختن از داده ها است. داده کاوی با بهره گیری از ابزارهای تجزیه و تحلیل داده ها به منظور کشف الگوها و روابط معتبری که تاکنون ناشناخته بوده اند به طبقه بندی داده ها می پردازد. این ابزارها ممکن است مدل های آماری، الگوریتم های ریاضی و روش های یاد گیرنده باشند ... . این مقاله در دسته بندی موضوعی شبکه عصبی طبقه بندی شده است. برای دانلود فایل کامل مقاله مقایسه طبقه بندی داده های نامتوازن توسط الگوریتم ماشین بردار پشتیبانی با الگوریتم شبکه عصبی با 9 صفحه به فرمت PDF، میتوانید از طریق بخش "دانلود فایل کامل" اقدام نمایید.