مقایسه کارآیی مدلهای شبکههای عصبی مصنوعی و رگرسیون برای پیشبینی بار رسوب جریان مطالعه موردی حوضه آبخیز سمندگان
Publish place: Geography and Environmental Planning، Vol: 22، Issue: 4
Publish Year: 1390
Type: Journal paper
Language: Persian
View: 310
This Paper With 21 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
JR_GEP-22-4_002
Index date: 10 May 2021
مقایسه کارآیی مدلهای شبکههای عصبی مصنوعی و رگرسیون برای پیشبینی بار رسوب جریان مطالعه موردی حوضه آبخیز سمندگان abstract
یک سیستم رودخانهای یک سیستم بازاست که از درگیر شدن ارتباطات مختلف و پیچیده شکل میگیرد. خصوصیات ذاتی حوضهها از یک سو و عوامل خارجی از سوی دیگر رفتارهای رودخانه را متاثر میسازد.وجود ارتباطات متقابل متعدد از جمله ارتباطات جریان ورسوب حمل شده وتاثیر عوامل ژئومورفولوژی حوضه و مدل سازی آن از اهمیت ویژه ای برخوردار است.در این مطالعه دونوع شبکه عصبی مصنوعی ژئومورفولوژیکی و غیر ژئومورفولوژیکی برای پیش بینی بار رسوب جریان رودخانه سمندگان طراحی گردید و نتایج آن با دو نوع مدل رگرسیونی ژئومورفولوژیکی و غیر ژئومورفولوژیکی مورد مقایسه قرار گرفت. نتایج طراحی شبکههای عصبی مبین کارآیی خوب شبکههای چند لایه ی پرسپترون با الگوریتم یادگیری پس انتشار خطا است. نتایج نشان داد که شبکه عصبی ژئومورفولوژیکی با ضریب تبیین ۸۶۲/۰ و مجذور میانگین مربعات خطای ۸۱۵/۱ در مقایسه شبکه عصبی غیر ژئومورفولوژیکی با ضریب تبیین ۸۲۷/۰و معیار خطای۰۳۱/۲ میزان رسوب جریان را بهتر پیشبینی میکند. نتایج ارزیابی مدلهای رگرسیونی مبین عملکرد ضعیفتر آنها در مقایسه با روش شبکه عصبی مصنوعی است به طوری که ضریب تبیین مدل رگرسیونی ساده غیر ژئومورفولوژیکی ۷۵۹/۰و معیار خطای ۳۹۵/۲ و ضریب تبیین مدل رگرسیونی ژئومورفولوژیکی برابر ۸۱۱/۰ با معیار خطای معادل ۱۴۲/۲ است. همچنین از مقایسه نتایج مدلهای مختلف چنین استنباط میشود زمانی که پارامترهای ژئومورفولوژیکی نظیر شاخص ناهمواری، شاخص گردی و شاخص تراکم زهکشی در مدل سازی وارد شوند نتایج ارزیابی آنها مناسبتر میشود.
مقایسه کارآیی مدلهای شبکههای عصبی مصنوعی و رگرسیون برای پیشبینی بار رسوب جریان مطالعه موردی حوضه آبخیز سمندگان Keywords:
بار رسوب , پیشبینی , رودخانه سمندگان , ژئومورفولوژی , سیلاب , شبکه عصبی مصنوعی , مدل رگرسیونی , مدل سازی
مقایسه کارآیی مدلهای شبکههای عصبی مصنوعی و رگرسیون برای پیشبینی بار رسوب جریان مطالعه موردی حوضه آبخیز سمندگان authors