Prediction of DSI Parameters from Conventional Well Log Data Using Intelligent System and Clustering tool
Publish place: Petroleum Technical Conference and Exhibition
Publish Year: 1392
Type: Conference paper
Language: English
View: 1,687
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
PTCE01_193
Index date: 8 October 2013
Prediction of DSI Parameters from Conventional Well Log Data Using Intelligent System and Clustering tool abstract
Compressional and Shear velocity are two fundamental parameters which have many applications in petrophysical, geophysical, and geomechanical operations. These two parameters can be obtained using Dipole Sonic Imaging tool (DSI), but unfortunately this tool is run just in few wells of a field. Therefore it is important to predict compressional and shear velocity indirectly from the other conventional well logs that have good correlation with these parameters in given well without these logs. The overriding tool of this work is intelligent systems including Artificial Neural Network, Fuzzy Logic and clustering tool Multi-resolution graph-based clustering (MRGC) for prediction of Compressional and Shear velocity. In this paper 1328 data points from one formation which have Compressional and Shear velocity are used. These data are divided into two groups: 998 data points for construction of intelligent systems, and 330 data points used for model testing. The results showed that despite difference in concept, all of the intelligent techniques were successful for estimation of Compressional and Shear velocity but clustering tool is better than other method
Prediction of DSI Parameters from Conventional Well Log Data Using Intelligent System and Clustering tool Keywords:
Compressional velocity , Shear velocity , Dipole sonic imaging , Neural network , Fuzzy logic , Multi-resolution graph-based clustering (MRGC) , Mean square error (MSE
Prediction of DSI Parameters from Conventional Well Log Data Using Intelligent System and Clustering tool authors
Morteza Nouri Taleghani
University of Tehran
Mina Karimi KhaledI
PETROLEUM UNIVERCITY
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :