EVOL UTIONARY BASE OPTIMIZATION METHOD TO DESIGN OF ARTIFICIAL NEURAL NETWORK FOR MODELING OF CLAUS REACTION FURNACE
Publish place: 2nd International Conference of Oil, Gas & Petrochemical
Publish Year: 1393
Type: Conference paper
Language: English
View: 862
This Paper With 8 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
ICOGPP02_033
Index date: 20 November 2015
EVOL UTIONARY BASE OPTIMIZATION METHOD TO DESIGN OF ARTIFICIAL NEURAL NETWORK FOR MODELING OF CLAUS REACTION FURNACE abstract
in this paper, an evolutionary approach is used to optimize the topology and characteristics of a feed forward Artificial Neural Network (ANN) in order to predict Claus reaction furnace effluents (SO2 and S2) mole fractions. Input parameters include temperature, reactant (H2S) mole fraction and residence time. The ranges of input data vary from 950 to 1250 °C, 17.91% to 31.29% and 0.5 to 2 second, respectively. Two optimum multilayer feed-forward ANNs were developed separately to predict SO2 and S2 mole fractions at reactor outlet using Genetic Algorithm. Design of the optimum ANN includes determination of number of neurons in each hidden layer, neuron transfer functions and connection pattern through neurons. It can be concluded that using black box modeling provides an accuracy of more than 90% which shows a good improvement comparingwith available kinetic modeling.
EVOL UTIONARY BASE OPTIMIZATION METHOD TO DESIGN OF ARTIFICIAL NEURAL NETWORK FOR MODELING OF CLAUS REACTION FURNACE Keywords:
EVOL UTIONARY BASE OPTIMIZATION METHOD TO DESIGN OF ARTIFICIAL NEURAL NETWORK FOR MODELING OF CLAUS REACTION FURNACE authors
Mohammad Hosein Eghbal Ahmadi
Research Institute of Petroleum Industry
Maryam Sadi
Research Institute of Petroleum Industry,
Mahdi Ahmadi Marvast
Research Institute of Petroleum Industry,
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :