بهینه سازی الگوریتم LOLIMOT توسط ترکیب مدلها
Publish place: 12th Annual Conference of Computer Society of Iran
Publish Year: 1385
نوع سند: مقاله کنفرانسی
زبان: Persian
View: 2,157
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ACCSI12_176
تاریخ نمایه سازی: 23 دی 1386
Abstract:
درخت مدل خطی محلی یادرخت مدل خطی محلی یاLOLIMOT که در آن از نوعی از مدل فازی عصبی خطی محلی استفاده شده است، الگوریتمی بر اساس استراتژی تقسیم و غلبه م ی باشد که در آن حل مسئله پیچیده از طریق تقسیم م سئله به تعدادی زیر مسئلة کوچ ک تر (و از این رو ساده تر) صورت می پذیرد. بنابراین مشخصات این مد ل های فازی -عصبی (زیر مسئله های کوچک تر شده ) به مقدار زیادی ، به ساختار الگوریتم بکار برده شده جهت تقسی م بندی، وابسته می باشد. یکی از مشکلات الگوریتمLOLIMOT رو به ر شد بودن تعداد مدل های محلی خطی یاLLM ها می باشد، بدین معنی که برای رسیدن به خروجی بهتر (خروجی با خطای کمت ر ) تنها راه در الگوریتم ،LOLIMOTپیدا کردن بدترین LLM) LLM با خطای بیشت ر ) و تقسیم آن به دو LLM می باشد و این یعنی اضافه شدن تعداد LLMها. در این مقاله س عی شده با ارائه روشی برای ترکیب LLM ها و قرار دادن آن در الگوریتم LOLIMOT از افزایش بی رویه تعداد مدل های محلی جلوگیری گردد. لذا می توان گفت هدف اصلی ترکیب نرو ن ها، رسیدن به خطای مطلوب با تعداد مد ل هایکمتری نسبت به الگوریتم اصلیLOLIMOT می باشد، در پایان الگوریتم پیشنهادی توانست با یافتن مد ل های مناسب و ترکیب آنها بخوبی به این مهم دست یابد.
Keywords:
Authors
سهیل فاطری
عضو هیئت علمی دانشگاه آزاد اسلامی واحد بابل
محمد تشنه لب
عضو هیئت علمی دانشگاه صنعتی خواجه نصیرالدین طوسی، دانشکده برق
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :