سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

تشخیص عابر پیاده در دنباله ی تصاویر با استفاده از استخراج ویژگی عملیات ریخت شناسی و شبکه ی عصبی

Publish Year: 1395
Type: Conference paper
Language: Persian
View: 840

This Paper With 19 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

NPECE01_426

Index date: 25 January 2017

تشخیص عابر پیاده در دنباله ی تصاویر با استفاده از استخراج ویژگی عملیات ریخت شناسی و شبکه ی عصبی abstract

در این مقاله یک روش تشخیص عابر پیاده برای دنباله تصاویر ارائه شده است ابتدا دنباله تصاویر با استفاده از مدل های مخلوط گوسی بخش بندی می شوند در این روش اطلاعات رنگ و موقعیت پیکسل از تصویر دریافت شده و بخش بندی تصویر با استفاده از فضای ویژگی پنج بعدی شامل ویژگی های طیفی و رنگی انجام می شود سپس یکسری عملیات ریخت شناسی روی تصویر بخش بندی شده انجام شده و ویژگی های اشیای آن اسخراج می شوند این ویژگی ها به همراه ویژگی های مطلوب برای عابر پیاده برای آموزش شبکه های عصبی پیش خور چند لایه و تابع پایه ای شعاعی داده می شوند نتایج حاصل کارایی روش ارائه شده را برای تشخیص عابر پیاده در دنباله تصاویر با پویایی بالا با درصد صحت 98 و 99 به ترتیب برای شبکه ی عصبی پیش خور چند لایه و شبکه ی تابع پایه ای شعاعی نشان می دهد روش ارائه شده بر روی مجموعه داده WEIZMANN اعمال شده است و برای ارزیابی عملکرد آن نیز نتایج حاصل با یک مدل مخلوط گوسی دیگر که بخش بندی را بدون دخالت دادن رنگ و تنها با فضای ویژگی دو بعدی انجام می دهد مقایسه شده است

تشخیص عابر پیاده در دنباله ی تصاویر با استفاده از استخراج ویژگی عملیات ریخت شناسی و شبکه ی عصبی Keywords:

تشخیص عابر پیاده در دنباله ی تصاویر با استفاده از استخراج ویژگی عملیات ریخت شناسی و شبکه ی عصبی authors

نگین امیری

دانشجوی کارشناسی ارشد دانشکده مهندسی برق دانشگاه تفرش ایران

علیرضا رضائی

استادیار گروه مهندسی سیستم و مکاترونیک دانشکده علوم و فنون نوین دانشگاه تهران ایران

فرشید حاجتی

استادیار دانشکده مهندسی برق دانشگاه تفرش ایران

سید مرتضی خلیلی

دانشجوی کارشناسی ارشد گروه مهندسی هوافضا دانشکده علوم و فنون نوین دانشگاه تهران ایران

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
D. Geronimo, A. M. Lopez, A. D. Sappa, and T. ...
D. A. Forsyth and J. Ponce, _ Moder Approach, " ...
S. Zeng, R. Huang, Z. Kang, and N. Sang, "Image ...
G. Celeux, S. Chretien, F. Forbes, and A. Mkhadri, _ ...
R. H. Evangelio, M. Patzold, and T. Sikora, "Splitting gaussians ...
D. Suzuo, D. Deguchi, I. Ide, H. Murase, H. Ishida, ...
A. Bartsch, F. Fitzek, and R. H. Rasshofer, "Pedestrian recognition ...
J. Byun, S. Kim, J. Sa, S. Kim, Y.-T. Shin, ...
V. Kwatra, A. Schodl, I. Essa, G. Turk, and A. ...
N. H. Salman, "Level Set Methods Implementation for Image Levelsets ...
novel technique to extract accurate cell A:ه [11] A. Gelzinis, ...
S. Naz, H. Majeed, and H. Irshad, "Image segmentation using ...
J. Shi and J. Malik, "Normalized cuts and image segmentation, ...
C. _ Bishop, Pattern recognition and machine learning. springer, 2006. ...
M. Blank, L. Gorelick, E. Shechman, M. Irani, and R. ...
R. Kruse, C. Borgelt, F. Klawonn, C. Moewes, M. Steinbrecher, ...
L. J. Latecki, R. Lakamper, and T. Eckhardt, "Shape descriptors ...
Q. Wang, "Gmm-based hidden markov random field for color image ...
Radial Basis Function(RBF) ...
نمایش کامل مراجع

مقاله فارسی "تشخیص عابر پیاده در دنباله ی تصاویر با استفاده از استخراج ویژگی عملیات ریخت شناسی و شبکه ی عصبی" توسط نگین امیری، دانشجوی کارشناسی ارشد دانشکده مهندسی برق دانشگاه تفرش ایران؛ علیرضا رضائی، استادیار گروه مهندسی سیستم و مکاترونیک دانشکده علوم و فنون نوین دانشگاه تهران ایران؛ فرشید حاجتی، استادیار دانشکده مهندسی برق دانشگاه تفرش ایران؛ سید مرتضی خلیلی، دانشجوی کارشناسی ارشد گروه مهندسی هوافضا دانشکده علوم و فنون نوین دانشگاه تهران ایران نوشته شده و در سال 1395 پس از تایید کمیته علمی اولین کنفرانس بین المللی چشم انداز های نو در مهندسی برق و کامپیوتر پذیرفته شده است. کلمات کلیدی استفاده شده در این مقاله استخراج ویژگی،الگوریتم EM،تشخیص عابر پیاده،شبکه ی عصبی،مدل مخلوط گوسی هستند. این مقاله در تاریخ 6 بهمن 1395 توسط سیویلیکا نمایه سازی و منتشر شده است و تاکنون 840 بار صفحه این مقاله مشاهده شده است. در چکیده این مقاله اشاره شده است که در این مقاله یک روش تشخیص عابر پیاده برای دنباله تصاویر ارائه شده است ابتدا دنباله تصاویر با استفاده از مدل های مخلوط گوسی بخش بندی می شوند در این روش اطلاعات رنگ و موقعیت پیکسل از تصویر دریافت شده و بخش بندی تصویر با استفاده از فضای ویژگی پنج بعدی شامل ویژگی های طیفی و رنگی انجام می شود ... . برای دانلود فایل کامل مقاله تشخیص عابر پیاده در دنباله ی تصاویر با استفاده از استخراج ویژگی عملیات ریخت شناسی و شبکه ی عصبی با 19 صفحه به فرمت PDF، میتوانید از طریق بخش "دانلود فایل کامل" اقدام نمایید.