Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها

Prediction of PVT properties of Ammonia by using Artificial Neural Network and equations of state

دوازدهمین کنگره ملی مهندسی شیمی ایران
Year: 1387
COI: NICEC12_794
Language: EnglishView: 1,901
This Paper With 17 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 17 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:


Amir Sharifi - Department of Chemical Engineering, Faculty of Engineering ,Farahan branch, Azad University, Arak
Abdolreza Moghadassi - Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak
Fahime Parvizian - Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak
SayedMohsen Hosseini - Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak


In this work a new method based on Artificial Neural Networks (ANN) for prediction of thermodynamic properties has been proposed for Ammonia. Knowledge of the thermodynamic properties of Ammonia is necessary for the interpretation of physical and chemical processes; because of it is an important gas that plays significant roles in many processes. For this development, the data sets that collected from Ammonia thermodynamic table [Perry’s Chemical Engineering Handbook] were used. After training the networks, the models were tested by unseen data to evaluate their accuracy and trend stability. Among this training the back-propagation learning algorithm with various training such as Scaled Conjugate Gradient (SCG), Levenberg-Marquardt (LM) and Resilient Backpropagation (RP) methods were used. The best suitable algorithm with appropriate number of seven neurons in the hidden layer which provides the minimum Mean Square Error (MSE), 0.0000900135, is found to be the SCG algorithm. Then ANN's results were compared with results of some equations of state such as Lee Kesler, NRTL, Soave-Redlich-Kwong and Peng Robinson. Comparisons showed the ANN capability for prediction of the thermodynamic properties of Ammonia.


Paper COI Code

This Paper COI Code is NICEC12_794. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
Sharifi, Amir and Moghadassi, Abdolreza and Parvizian, Fahime and Hosseini, SayedMohsen,1387,Prediction of PVT properties of Ammonia by using Artificial Neural Network and equations of state,12th National Iranian Chemical Engineering Congress,Tabriz,

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :

  • H.R. Valles, A neural network method to predict activity coefficients ...
  • M. Biglin, Isobaric vapor-liquid equilibrium calculations of binary systems using ...
  • A. Chouai, D. Richon, S. Laugier, Modeling of thermo dynamic ...
  • S. Ganguly, Prediction of VLE data using radial basis function ...
  • R.B. B ozorgmehry, F. Abdolahi, M.A. Moosavian, C h aracterization ...
  • M.R. Dehghani, H. Modarress, A. Bakhshi, Modeling and prediction of ...
  • A. Sozen, E. Arcakilioglu, M. Ozalp, Formulation based on artificial ...
  • M.T. Hagan, H.B. Demuth, M. Beal, Neural Network Design, PWS ...
  • A. Sozen, E. Arcakilioglu, M. Ozalp, Investigation of thermodynamic properties ...
  • D. Richon, S. Laugier, Use of artificial neural networks for ...
  • R. Gharbi, Estimating the isothermal compressibility coefficient of under saturated ...
  • R.I.W. Lang, a Future for Dynamic Neural Networks, Dept. Cybernetics, ...
  • A. B. Bulsari., Neural Networks for Chemical Engineers. Amsterdam: Elsevier ...
  • H. Demuth, M. Beale, Neural Network Toolbox Users Guide, 2002. ...
  • E.A. Osman, M.A. Al-MArhoun, Using artificial neural networks to develop ...
  • R.H. Perry, Perrys chemical engineer's Handbook?, 7th ed., McGrow-Hill companies, ...

Research Info Management

Certificate | Report | من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:

اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.


The specifications of the publisher center of this Paper are as follows:
Type of center: Azad University
Paper count: 323
In the scientometrics section of CIVILICA, you can see the scientific ranking of the Iranian academic and research centers based on the statistics of indexed articles.

مقالات پیشنهادی مرتبط

New Papers

New Researchs

Share this page

More information about COI

COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.