Study on the dynamic behavior of cylindrical steel liquid storage tanks using finite element method

Publish Year: 1395
نوع سند: مقاله ژورنالی
زبان: English
View: 425

This Paper With 22 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_TAVA-2-2_004

تاریخ نمایه سازی: 2 آبان 1396

Abstract:

Dynamic behavior of ground supported cylindrical storage tanks (CST) is of crucial importance because of its applications in industrial complexes. Seismic behavior of tanks is greatly affected by the height to diameter ratio,fluid height and fluid type. Five CSTs with different height to diameter ratios, three CSTs with the same height and diameters but various fluid heights and one CST with two different fluid types are selected to determinethe effect of height to diameter ratio, fluid heights, and fluid type on the seismic behavior of the tanks respectively. Static, modal, response spectrum, and time history analyses are used in this study for the selected CSTs usingANSYS finite element software. In the time history analysis method, the Tabas, Kobe and Cape Mendocino earthquake records have been utilized on the first five CSTs to ascertain the effect of height to diameter ratio and the Tabas earthquake record is used for the rest of CSTs. Results show that an increase in fluid height lead to a corresponding increase in the base shear.Based on observations, 100 percent increase in the diameter showed 63 percent increase in sloshing under the response spectrum and 70 percent under time history analyses. Based on static and response spectrum analyses,the highest values of displacements are obtained at the lowest part of the tanks, while in time history analysis, the highest is obtained at the top of thetanks. All analyses showed that the maximum stress occurred at the height of 1 to 2 meter from the bottom of the tanks.

Authors

Mohsen Yazdanian

Young Researchers and Elite Club, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

Seyed Vahid Razavi

Department of Civil Engineering, Jundi-Shapur University of Technology, Dezful, Iran

Mahmoud Mashal

Department of Irigation Engineering, Aburaihan Campus, Tehran University, Tehran, Iran