کمی سازی سیگنالهای مغزی به منظور ارزیابی استرس هیجانی با استفاده از ویژگیهای غیرخطی و طیفهای مرتبۀ بالا
Publish place: 16th Iranian conference on Biomedical Engineering
Publish Year: 1388
نوع سند: مقاله کنفرانسی
زبان: Persian
View: 2,637
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICBME16_020
تاریخ نمایه سازی: 11 تیر 1388
Abstract:
در این تحقیق از سیگنالهای مغزی که در فعالیتهای شناختی مورد توجه خاصی هستند، برای تشخیص استرس هیجانی استفاده شده است . بنابراین با طراحی آزمایش مناسب به دنبال ایجاد استرس کوتاه مدت در فرد بوده ایم و آزمایش طوری طراحی شده است تا از خستگی های ذهنی جلوگیری شود. برای ایجاد استرس هیجانی، از زیرمجموعه ای از تصاویر IAPS مرتبط با دو حالت از فضای تحریک هیجانی، شامل تحریک منفی و آرامش (خنثی) استفاده شده است. سیگنالهای مغزی در 6 کانال به نامهای O2,O1,T4,T3,FP2,FP1 ثبت شده است. با استفاده از طیفهای مرتبۀ بالا و مقادیر ویژگیهای استخراجی از آزمون Himich و بعد فرکتال به روش پتروشن، بعد همبستگی و نمای لیاپانوف از سیگنال EEG ویژگیهای استخراج گردیده، سپس به کمک الگوریتم ژنتیک ویژگیهای بهینه و تاثیرگذار انتخاب و یا اعمال آن به طبقه کننده های SVM,Elman، دو وضعیت استرس هیجانی به ترتیب با درصد صحت تفکیک 3/78و1/72 از یکدیگر تفکیک شدند. با مقایسۀ بین دو طبقه بندی کننده مشاهده می شود، SVM به دلیل قدرت تعمیم خوب، بهتر توانسته داده ها را از یکدیگر تفکیک کند. نتایج نشان میدهد، ویژگیهای استخراجی از طیفهای مرتبۀ بالا، بعد فرکتال، بعد همبستگی و نمای لیاپانوف، بازنمایی خوبی از رفتار مغز را در حالت استرس هیجانی دارد. و نتایج حاصله از این تحقیق بهبود حدود 5 درصد در نتایج را داشته است.
Keywords:
Authors
سیدعابد حسینی
دانشجوی کارشناسی ارشد مهندسی پزشکی دانشگاه آزاد اسلامی واحد مشهد
محمدعلی خلیل زاده
استادیار گروه مهندسی پزشکی دانشگاه آزاد اسلامی واحد مشهد
مهدی آذرنوش
دانشجوی دکترای مهندسی پزشکی دانشگاه آزاد اسلامی واحد علوم و تحقیقات ت
سیدمهران همام
استادیار بالینی دانشکده پزشکی دانشگاه آزاد اسلامی واحد مشهد
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :