سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

A NEURAL NETWORK APPROA CH TO FA UL T DIA GNOSIS IN INDUSTRIAL POWER NETWORKS USING SEQUENTIAL CURRENTS

Publish Year: 1375
Type: Conference paper
Language: English
View: 2,513

متن کامل این Paper منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل Paper (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دانلود نمایند.

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

PSC11_074

Index date: 14 September 2007

A NEURAL NETWORK APPROA CH TO FA UL T DIA GNOSIS IN INDUSTRIAL POWER NETWORKS USING SEQUENTIAL CURRENTS abstract

This paper presents a new neural network approach for an on-line fault diagnosis using the data obtained From digital fault recorders. This method applies forward multilayer perceptronasa learning system in which the pre-processing phase uses some concepts of digital signal processing such as Fourier transform. We begin our exploration with filtering the fundamental component of short circuit current. After that, a preprocessor unit is used to reduce the number of training patterns and also to estimate the location of short circuit fault. In the next step, we proceed with classification of the common four fault types: one-phase-to-ground, two-phase, two-phase-to-ground and three-phase-to-ground short circuit. In order to show the capability of the proposed method some simulations have been performed. The results are very encouraging indicating that the proposed neural network approach can be used for short circuit problems in real-size Industrial Power Networks.

A NEURAL NETWORK APPROA CH TO FA UL T DIA GNOSIS IN INDUSTRIAL POWER NETWORKS USING SEQUENTIAL CURRENTS authors

Jamaati

Amirkabir University IRAN

Abedi

Amirkabir University IRAN

Menhaj

Amirkabir University IRAN

Kouhsari

Amirkabir University IRAN