A New Variable Structure Control Methodology for Electrical/ Mechanical Parameter Estimation of Induction Motor
Publish place: 17th International Power System Conference
Publish Year: 1381
Type: Conference paper
Language: English
View: 2,844
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
PSC17_133
Index date: 30 September 2007
A New Variable Structure Control Methodology for Electrical/ Mechanical Parameter Estimation of Induction Motor abstract
Induction motor parameter estimation is generally needed for such purposes as fault detection and the achievement of high dynamic performance drives. This paper is an attempt to use variable structure control (VSC) methodology for the on-line estimation of several significant mechanical
and electrical induction motor parameters. The estimated parameters are rotor resistance, magnetizing inductance, stator resistance and viscous damping coefficient. In this combined control/estimation method, we propose to apply field-oriented control to the non-linear model of induction motor, and then transform the model by Input-state linearization into canonical form. Application of variable structure method would then yield desirable parameters whose Lower and upper bounds being known. Stability of the closed loop system is studied, and it is shown that the identification algorithm is convergent and the closed loop system is robust to system uncertainties given the switching gain is chosen sufficiently large. Simulation results show that when parameter step changes are applied, favorable motor parameter tracking is made.
A New Variable Structure Control Methodology for Electrical/ Mechanical Parameter Estimation of Induction Motor Keywords:
A New Variable Structure Control Methodology for Electrical/ Mechanical Parameter Estimation of Induction Motor authors
Faezian
Jovain Electrical Machines Co. Sabzevar. Iran
Akbarzadeh-T
Ferdosvsi university Mashad. Iran
Tabatabaei-Yazdi
Ferdowsi university Mashad. Iran
Sargolzaei
PhD. student of Sharif university Tehran. Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :