سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

WAVELET BASED DYNAMIC POWER MANAGEMENT FOR NONSTATIONARY SERVICE REQUESTS

Publish Year: 1383
Type: Conference paper
Language: English
View: 1,805

This Paper With 6 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

ICEE12_240

Index date: 4 October 2008

WAVELET BASED DYNAMIC POWER MANAGEMENT FOR NONSTATIONARY SERVICE REQUESTS abstract

The goal of dynamic power management is to reduce power dissipation in system level by putting system components into different states. This paper proposes a wavelet based approach that models the device behavior precisely. In spite of conventional stochastic models, this method eliminates some impractical assumptions which were shortcoming for previous methods. The stationary behavior of devices and the use of a memoryless distribution for device modeling are some of the aforementioned assumptions that have been relaxed in our model. Additionally, wavelet model can capture the local information accurately. Furthermore this algorithm is adaptive. This method has two additional benefits; firstly according to the device application a suitable wavelet basis can be used. Secondly, it has a sparse time-scale representation indicating that only a few coefficients in their wavelet representation have to be estimated. The simulation results show 95% accuracy in desktop Hard Disk Drive (HDD) states prediction and power saving by a factor of 2.

WAVELET BASED DYNAMIC POWER MANAGEMENT FOR NONSTATIONARY SERVICE REQUESTS authors

Ali Abbasian

IC Design Laboratory, Electrical and Computer Engineering Dept., University of Tehran

Safar Hatami

IC Design Laboratory, Electrical and Computer Engineering Dept., University of Tehran,

Ali Afzali-Kusha

IC Design Laboratory, Electrical and Computer Engineering Dept., University of Tehran

Caro Lucas

C.I.P.C.E., Electrical and Computer Engineering Dept., University of Tehran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
T. Simunic, L. Benini, P. Glynn, and G. D. Micheli, ...
Q. Qiu, Q. Wu, and M. Pedram, «Stochastic modeling of ...
D. Ramanathan, S. Irani, and R. K. Gupta, 4An analysis ...
S. Irani, S. Shukla, R. Gupta, 4Competitive analysis of dynamic ...
L. Benini, A. Bogliolo, G. D. Micheli, 4A survey of ...
نمایش کامل مراجع