An Adaptive PID Controller in STATCOM Application for Performance Improvement Based On the Genetic Algorithm
Publish place: 22nd International Power System Conference
Publish Year: 1386
Type: Conference paper
Language: English
View: 3,078
This Paper With 9 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
PSC22_175
Index date: 5 May 2007
An Adaptive PID Controller in STATCOM Application for Performance Improvement Based On the Genetic Algorithm abstract
Static Synchronous Compensator (STATCOM) is a device capable of solving the power quality problems at the power system. These problems happen in milliseconds and because of the time limitation; it requires the STATCOM that has continuous reactive power control with fast
response. In this way, optimal exploitation of STATCOM by classical controllers has been a controversial issue in reputable journals. One of the most common controlling devices in the market is the Proportional-Integral- Derivative (PID) controller. In this article, the STATCOM is controlled by PI and PID controllers. A new control method that is a Model Reference Adaptive Control method (MRAC) based on the combination of PID
control and the Genetic Algorithm (GA) is introduced. Genetic algorithm is employed to find the best values for PID controller's parameters in a very short time. The simulation results show an improvement in current control response. These methods are tested in MATLAB, and their results are obtained.
An Adaptive PID Controller in STATCOM Application for Performance Improvement Based On the Genetic Algorithm Keywords:
An Adaptive PID Controller in STATCOM Application for Performance Improvement Based On the Genetic Algorithm authors
Eshtehardiha
Department of Islamic Azad University, Najafabad Branch
Shohgholian
Department of Islamic Azad University, Najafabad Branch
Bayati Poodeh
Department of Islamic Azad University, Najafabad Branch
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :