سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

مقایسه تکنیکهای داده کاوی کمترین مربعات جزئی خطی وغیر خطی

Publish Year: 1395
Type: Conference paper
Language: Persian
View: 979

This Paper With 16 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

IICMO01_052

Index date: 6 September 2016

مقایسه تکنیکهای داده کاوی کمترین مربعات جزئی خطی وغیر خطی abstract

این مقاله دو تکنیک مختلف پیشگویانه دیتا ماینینگ را باهم مقایسه می کند. یک تکنیک خطی ، حداقل مربعات جزئی PLS ویک تکنیک غیر خطی NLPLS 2روی مجموعه هایی از داده های متفاوت ومنحصر مستقیم واقع شونده داده که دراین مقاله مجموعه داده COL نامیده می شود و یک مجموعه داده دیگر که در این مقاله داده شبیه سازی شده نامیده شد. درآمارو ریاضیات، حداقل مربعات جزئی، اصطلاحا به عنوان یک روش رگرسیونی اریب معرفی می شود. این داده ها منحصر به فردهستندویک ترکیب از مشخصه هایی که درادامه می آیند دارند.تعدادکمی از متغیرهای پیش بینی کننده، تعدادزیادی متغیرپیش بینی کننده، متغیرهای دریک خط مستقیم واقع شونده وبسیاری متغیرهای زائد. ماهیت این مجموعه ازداده ها، کشف می شوندوکیفیت(خصوصیت) منحصر به فردآنها، معین می شود. دریک دامنه وسیع، این پردازش داده به کاوشگرهاوتحلیل گرها کمک می کندتااینکه یک انتخاب ازتکنیک پیش بینانهبرای کاربرد داشته باشند. مساله بزرگ، چگونگی کاهش این متغیرها به تعدادمینیممی است که می تواند به صورت کامل متغیر پاسخگو راپیش بینی کند. حداقل مربعات جزئی خطی ( PLS )وحداقل مربعات جزئی غیرخطی ( NLPLS )،که بسیاری زمانهاازعملکردهای شبکه عصبی برای نقشه غیرخطی شده استفاده می کنند مدلهایی هستند که درهرمجموعه ازداده می توان به کاربرد. هرتکنیک روشهای متفاوتی از استفاده دارد.این روشهای متفاوت، درابتداروی هرمجموعه داده استفاده می شد وبهترین روش برای مقایسه جهانی بادیگرتکنیکها برای همان مجموعه داده درهرتکنیک موردملاحظه بود. هدف از این شناسایی تکنیکی هست که بهترین عملکردرابرای یک نوع مجموعه دردسترس از داده، داردوازآن به جای استنادکردنبه رویکردمعمول سعی وخطا به طور مستقیم استفاده می شود.زمانیکه این فرآیند به صورت کارا، درساخت به کاررود، مدلها برای پیش گویی یا پیش بینی طرح کسب وکار، زمان تدارک راکاهش خواهندداد. کاردراین مقاله تحقیقی، همچنین درشناسایی عملکرد داده کاوی خیلی مهم پیش بینانه واندازه گیریها یا ضوابط ارزیابی مدل ، مفیدخواهدبود.

مقایسه تکنیکهای داده کاوی کمترین مربعات جزئی خطی وغیر خطی Keywords:

داده کاوی , کمترین مربعات جزئی خطی , کمترین مربعات جزئی غیر خطی

مقایسه تکنیکهای داده کاوی کمترین مربعات جزئی خطی وغیر خطی authors

مرتضی جداییان

دانشجوی رشته MBA گرایش استراتژی پردیس فارابی دانشگاه تهران

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
امانی، جواد، خضری آذر، هیمن، محمودی، حجت (1391). معرفی مدل ...
حاج نایب، علی، بی تا. برازش منحنی با استفاده از ...
نمایش کامل مراجع

مقاله فارسی "مقایسه تکنیکهای داده کاوی کمترین مربعات جزئی خطی وغیر خطی" توسط مرتضی جداییان، دانشجوی رشته MBA گرایش استراتژی پردیس فارابی دانشگاه تهران نوشته شده و در سال 1395 پس از تایید کمیته علمی همایش پژوهش های مدیریت و علوم انسانی در ایران پذیرفته شده است. کلمات کلیدی استفاده شده در این مقاله داده کاوی، کمترین مربعات جزئی خطی، کمترین مربعات جزئی غیر خطی هستند. این مقاله در تاریخ 16 شهریور 1395 توسط سیویلیکا نمایه سازی و منتشر شده است و تاکنون 979 بار صفحه این مقاله مشاهده شده است. در چکیده این مقاله اشاره شده است که این مقاله دو تکنیک مختلف پیشگویانه دیتا ماینینگ را باهم مقایسه می کند. یک تکنیک خطی ، حداقل مربعات جزئی PLS ویک تکنیک غیر خطی NLPLS 2روی مجموعه هایی از داده های متفاوت ومنحصر مستقیم واقع شونده داده که دراین مقاله مجموعه داده COL نامیده می شود و یک مجموعه داده دیگر که در این مقاله داده شبیه سازی شده ... . این مقاله در دسته بندی موضوعی داده کاوی طبقه بندی شده است. برای دانلود فایل کامل مقاله مقایسه تکنیکهای داده کاوی کمترین مربعات جزئی خطی وغیر خطی با 16 صفحه به فرمت PDF، میتوانید از طریق بخش "دانلود فایل کامل" اقدام نمایید.