Suitability of Different Neural Networks in Daily Reservoir Inflow Simulation
Publish Year: 1390
نوع سند: مقاله کنفرانسی
زبان: English
View: 1,329
This Paper With 12 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NCHP03_151
تاریخ نمایه سازی: 3 فروردین 1391
Abstract:
Climate change impact assessment studies often need models capable in simulating river streamflow on a daily time basis. In this study, different type of Artificial Neural Networks (ANNs) were analyzed in simulating the daily inflow into Taleghan reservoir in Iran. These types include: Elman Networks, Feed Forward Backpropagation Neural Networks with one (FFNN1) and tow (FFNN2) hidden layers, Focused Time Delay Networks (FTDN), Distributed Time Delay Networks (DTDN), General Regression Neural Network with standardized inputs (GRNN1) and with nonstandardized inputs (GRNN1), and Radial Basis Networks with standardized inputs (RBN1) and with non-standardized inputs (RBN2). An iterative algorithm was designed to assess different architecture of these models. Results revealed the potential of these models, specially Elman, RBN and GRNN, as suitable tools for simulating the daily reservoir inflow. Also, it was concluded that multiday averaging can improve the simulation results considerably.
Keywords:
Authors
Behnam Ababaei
PhD Candidate of Irrigation and Drainage Engineering, University of Tehran, Iran
Teymour Sohrabi
Professor, Assistant Professor and Assistant Professor (Respectively), University of Tehran, Iran
Farhad Mirzaei
Professor, Assistant Professor and Assistant Professor (Respectively), University of Tehran, Iran
Shahab Araghinejad
Professor, Assistant Professor and Assistant Professor (Respectively), University of Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :