ROBUST TUNING OF POWER SYSTEM STABILIZER USING ARTIFICIAL INTELLIGENCE

Publish Year: 1377
نوع سند: مقاله کنفرانسی
زبان: English
View: 1,582

This Paper With 10 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

PSC13_016

تاریخ نمایه سازی: 28 شهریور 1386

Abstract:

Tuning of power system stabilizers (PSS) over a wide range of operating conditions and load models is investigated using an artificial neural network (ANN). The neural net is specially trained by an input-output set prepared by a novel approach based on genetic algorithms (GA). To enhance power system damping, it is desirable to adapt the PSS parameters in real-time based on generator operating conditions and load models. To do this, on-line measurements of generator loading conditions are chosen as the input signals to the neural network. The output of he neural network is the desired gain of the PSS that ensures the stabilization of the system for a wide range of load models connected to the power system. For training the neural network a set of operating conditions is chosen as the input. The desired output for any input is computed by simultaneous stabilization of the system over a wide range of load models using genetic algorithm. In this regard, the power system operating at a specified operating condition and various load models is treated as a finite set of plants. The problem of selecting the output parameters for every operating point which simultaneously stabilize this set of plants is converted to a simple optimization problem which is solved by a genetic algorithm and an eigenvalue-based objective function. The proposed method is applied to a test system and the validity is demonstrated through digital simulations.

Keywords:

artificial neural network (ANN) , genetic algorithms (GA) , power system stabilizer (PSS) , load model

Authors

Mojtaba Khederzadch

Department of Electrical Engineering, Power & Water Institute of Technology, Tehran, IRAN.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Yao-Nan Yu, "Electric Power System Dynamics New York, Academic Press, ...
  • F. P. DeMello and T. F. Laskowski, Concepts of power ...
  • F. P. DeMello and C. A. Concordla, "Concepts of synchronous ...
  • E. V. Lareen and D. A. Swann, "Applying power system ...
  • Y. Y. Hsu and C. Y. Hau, "Design of a ...
  • Y. Y. Hs u a n d C. C. S ...
  • K. A. Ellithy and M. A. Choudhry, "Effect of load ...
  • E. Vaahedi, H. M. Zein El-Din and W. W. Price, ...
  • W. Mauricio and A. Semlyen, "Effect of load cha racteristics ...
  • IEEE Computer Analysis of Power Systems Working Group, System load ...
  • T. Ohyama, A. Watanabe, K. Nishimura and S. Tsurata, "Voltage ...
  • Wen-Shlow Kao, C. J. Lin and C. T. Huang, "Comparison ...
  • P.M. Anderson, A.A. Fouad , "Power System Control and Stability', ...
  • D. E. Goldberg, "Genetic algorithms in search, optimization and machine ...
  • P. J. Fleming and C. M. Fonseca, "Genetic algorithms in ...
  • J. Stanley, Vntroductlon to neural networks", California Scientific Software, Siera ...
  • R. Hecht-N ielsen _ 'Theory of the backp ropagation neural ...
  • A. Lapedes and R. Farber, "How neural networks work", Neural ...
  • D. E. Rumelhart and J. L. M c C 1 ...
  • P. K. Simpson, "Artificial neural systems: Foundations, Parad ig _ ...
  • نمایش کامل مراجع