ROBUST TUNING OF POWER SYSTEM STABILIZER USING ARTIFICIAL INTELLIGENCE
Publish place: 13th International Power System Conference
Publish Year: 1377
نوع سند: مقاله کنفرانسی
زبان: English
View: 1,582
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
PSC13_016
تاریخ نمایه سازی: 28 شهریور 1386
Abstract:
Tuning of power system stabilizers (PSS) over a wide range of operating conditions and load models is investigated using an artificial neural network (ANN). The neural net is specially trained by an input-output set prepared by a novel approach based on genetic algorithms (GA). To
enhance power system damping, it is desirable to adapt the PSS parameters in real-time based on generator operating conditions and load models. To do this, on-line measurements of generator loading conditions are chosen as the input signals to the neural network. The output of he neural network is the desired gain of the PSS that ensures the stabilization of the system for a wide range of load models connected to the power system. For training the neural network a set of operating conditions is chosen as the input. The desired output for any input is computed by simultaneous stabilization of the system over a wide range of load models using genetic algorithm. In this regard, the power system operating at a specified operating condition and various load models is treated as a finite set of plants. The problem of selecting the output parameters for every operating point which simultaneously stabilize this set of plants is converted to a simple optimization problem which is solved by a genetic algorithm and an eigenvalue-based objective function. The proposed method is applied to a test system and the validity is demonstrated through digital simulations.
Keywords:
artificial neural network (ANN) , genetic algorithms (GA) , power system stabilizer (PSS) , load model
Authors
Mojtaba Khederzadch
Department of Electrical Engineering, Power & Water Institute of Technology, Tehran, IRAN.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :